Young Researchers in Imaging Seminars

I’m giving a talk for the Young Researchers in Imaging Seminars, on

Wednesday, February 27th, 15:00

in Amphi Darboux at IHP.

Title: On the use of Gaussian models on patches for image denoising

Abstract: Some recent denoising methods are based on a statistical modeling of the image patches. In the literature, Gaussian models or Gaussian mixture models are the most widely used priors.
In this presentation, after introducing the statistical framework of patch-based image denoising, I will propose some clues to answer the following questions: Why are these Gaussian priors so widely used? What information do they encode?
In the second part, I will present a mixture model for noisy patches adapted to the high dimension of the patch space. This results in a denoising algorithm only based on statistical tools, which achieves state-of-the-art performance.
Finally, I will discuss the limitations and some developments of the proposed method.

Continuer la lecture de Young Researchers in Imaging Seminars

New preprint available!

Statistical Modeling of the Patches DC Component for Low-Frequency Noise Reduction [pdf]

Abstract: In this work, we consider an additive white Gaussian noise (AWGN) model on the image patches in the context of patch-based image denoising. From this, we propose a derivation of the induced models on the centered patch of noise and on the DC component of the noise. These models allow us to treat separately the two component. We provides experiments with the HDMI method [pdf] that lead to denoising quality improvements, particularly for residual low frequency noise.

More… first color experiments came up! For images with many constant areas and few textured parts the results are extremely positive, for instance, the improvement for the image dice with a noise of standard deviation 50/255, is up to 0.25dB. The final result is even better than the recent deep learning method FFDNet.

Continuer la lecture de New preprint available!

Présentation Séminaire Images Optimisation et Probabilités de l’IMB

Je présenterai mes travaux lors du Séminaire Images Optimisation et Probabilités de l’Institut de Mathématiques de Bordeaux le

jeudi 11 novembre 2018 à 11h

Comment utiliser un modèle de mélange de gaussiennes sur les patchs pour le débruitage d’image ?

Résumé : Dans la littérature du débruitage d’image par patchs, de nombreuses méthodes utilisent une modélisation statistique des patch. Les modèles a priori généralement utilisés sont des modèles gaussiens ou de mélange de gaussiennes.
Dans cet exposé, après avoir brièvement introduit le cadre statistique, je proposerai quelques indices pour répondre aux questions suivantes : Pourquoi ces a priori gaussiens sont-ils largement utilisés ? Quelles informations encodent-ils ?
La seconde partie propose un modèle probabiliste de mélange pour les patchs bruités adapté à la grande dimension. Il en résulte un algorithme de débruitage reposant uniquement sur des estimations statistiques, qui atteint les performances de l’état-de-l’art.
Enfin, je discuterai des limitations et des développements possibles de la méthode proposée.