Statistical Modeling of the Patches DC Component for Low-Frequency Noise Reduction

> Antoine Houdard IMB, Université de Bordeaux

27th European Signal Processing Conference

A Coroña, September 2-6, 2019

patch-based image denoising

1. Patch extraction

observed patches $\{y_1, \ldots, y_n\}$

$Y_i = X_i + N_i$

3. inference of the parameters θ

$$\mathcal{L}(y,\theta) = -\sum_{i} \log \left(\phi(y_i;\theta)\right)$$

3. inference of the parameters θ

$$\mathcal{L}(y,\theta) = -\sum_{i} \log (\phi(y_i;\theta))$$

4. clean patches estimation

$$\hat{x}_{\mathsf{MMSE}_i} = \mathbf{E}[X_i | Y_i = y_i]$$

in the literature

- * Patch-based PCA [Deledalle, Salmon, Dalalyan, 2011]
- * EPLL [Zora, Weiss, 2011]
- * NL-Bayes [Lebrun, Buades, Morel 2012]
- * SURE Guided Gaussian Mixture Image Denoising [Wang, Morel, 2013]
- * Single-frame image denoising using gaussian mixtures [Teodoro, Almeida, Figueiredo, 2015]
- * HDMI [H., Bouveyron, Delon, 2018]

* ...

This work: HDMI enhancement

- 1. Modeling of the patches distribution with a GMM with dimension reduction
- 2. Inference of the parameters with EM algorithm
- 3. Estimation of the clean patches with conditional expectation

Good for textures but low-frequency residual noise

noise 20% & patches 7×7

Good for textures but low-frequency residual noise

noise 20% & patches 7×7

Good for textures but low-frequency residual noise

noise 20% & patches 7×7

Observation: this comes from the patches DC component

Idea: denoise the DC component image separately

the denoising can therefore be enhanced

Noise modeling on the DC image

• the DC component
$$\overline{Y}_i = \frac{1}{p} \sum_{j=1}^p Y_i(j)$$
 correspond to the pixel *i* of the DC image

noise model on the DC component

$$\overline{Y}_i = \overline{X}_i + \overline{N}_i \in \mathbf{R},$$

with \overline{N}_i not independent Gaussian random variables

Noise modeling on the DC image

extraction of patches from the DC image

 $Z_i = W_i + M_i,$

where $Z_i = \pi_i(\overline{Y})$, $W_i = \pi_i(\overline{X})$ and $M_i = \pi_i(\overline{N})$.

Proposition

 $M_i \sim \mathcal{N}(0_p, \Sigma_{M_i})$ with

$$\Sigma_{M_i} = \frac{\sigma^2}{p^2} B \otimes B,$$

where

$$B = \begin{pmatrix} s & (s-1) & \cdots & 1 \\ (s-1) & s & \ddots & \vdots \\ \vdots & \ddots & \ddots & (s-1) \\ 1 & \cdots & (s-1) & s \end{pmatrix},$$

Noise whitening

Proposition

 Σ_{M_i} is symmetric positive-definite and there exists L invertible such that $B\otimes B=LL^T.$

Noise whitening

Proposition

 Σ_{M_i} is symmetric positive-definite and there exists L invertible such that $B\otimes B=LL^T.$

$$L^{-1}Z_i = L^{-1}W_i + L^{-1}M_i,$$

denising problem with white Gaussian noise of variance σ^2/p^2 .

let $f_{denoise}$ be a patch denoiser (ex. HDMI), an estimate of W_i is

$$\widehat{W}_i = L f_{denoise} \left(L^{-1} W_i \right)$$

afterwards DC correction

1. estimate
$$\widehat{X}_i = f_{denoise}(Y_i)$$
 for each patch

- 2. estimate $\widehat{\overline{X_i}}$ by denoising the DC image
- 3. replace the DC component of each patch with this estimate

$$h(X_i) = \widehat{X_i} - \overline{\widehat{X_i}} \mathbf{1}_p + \widehat{\overline{X_i}} \mathbf{1}_p$$

noisy image

HDMI denoised

noisy image

HDMI denoised DC corrected

noisy image

HDMI denoised

noisy image

HDMI denoised DC corrected

noisy image

HDMI denoised

HDMI denoised DC corrected

noisy image

HDMI denoised

HDMI denoised DC corrected

noisy image

HDMI denoised

HDMI denoised DC corrected

Concluding remarks

We proposed to denoise the DC component of the patches that

- * can be rewritten as an additive white Gaussian noise problem
- * improves the denoising result both visually and qualitatively

 \star can be used with any patch denoising method $f_{denoise}$

further work link with multi-scale frameworks and generalization

Thank you for your attention!

More information on the HDMI method and this work on: houdard.wp.imt.fr