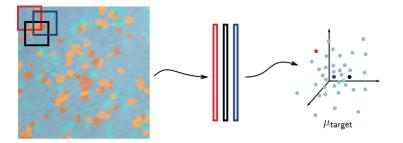
Wasserstein Generative Models for Patch-Based Texture Synthesis

Antoine Houdard¹, Arthur Leclaire¹, Nicolas Papadakis¹, Julien Rabin²

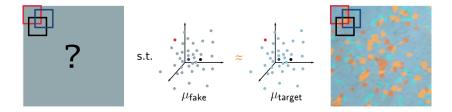
SSVM online conference, May 18, 2021



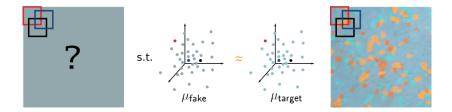
Represent a target texture u with its patch distribution

$$\mu_{\mathsf{target}} = \frac{1}{m} \sum_{i=1}^{m} \delta_{P_i u}$$

with P_i linear operator that extract the i-th patch



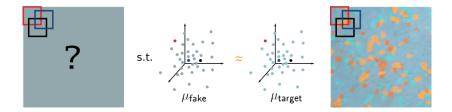
Main idea Find or generate an image s.t. μ_{fake} is close to μ_{target}



Main idea Find or generate an image s.t. μ_{fake} is close to μ_{target}

Two scenarios:

- Single image: $\mu_{\mathsf{fake}} = \frac{1}{n} \sum \delta_{P_i \theta} \text{ discrete (part 2)}$
- Generative model: $\mu_{fake} = \frac{1}{n} \sum (P_i \circ g_\theta) \sharp \zeta$ continuous (part 3)



Main idea Find or generate an image s.t. μ_{fake} is close to μ_{target}

Two scenarios:

- Single image: $\mu_{\mathsf{fake}} = \frac{1}{n} \sum \delta_{P_i \theta} \text{ discrete (part 2)}$
- Generative model: $\mu_{fake} = \frac{1}{n} \sum (P_i \circ g_\theta) \sharp \zeta$ continuous (part 3)

close to \rightarrow Optimal Transport cost! (Part 1)

Part 1 – Theoretical results

Optimal Transport

Definition
$$OT_c(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int c(x, y) d\pi(x, y)$$

Dual formulation $\operatorname{OT}_{c}(\mu, \nu) = \max_{\psi \in L^{\infty}} \mathbf{E}_{X \sim \mu} [\psi^{c}(X)] + \mathbf{E}_{Y \sim \nu} [\psi(Y)]$ where $\psi^{c}(x) = \min_{y} [c(x, y) - \psi(y)]$ is the *c*-transform of ψ

Formulation in our semi-discrete case

Goal minimize w.r.t. θ

$$W(\theta) := \operatorname{OT}_{c}(\mu_{\mathsf{fake}}(\theta), \mu_{\mathsf{target}}) = \max_{\psi \in \mathbf{R}^{m}} F(\psi, \theta)$$

where

$$F(\psi, \theta) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Z \sim \zeta} \left[\psi^{c}(P_{i} \circ g_{\theta}(Z)) + \frac{1}{m} \sum_{j=1}^{m} \psi_{j} \right]$$

Remarks

- $\blacktriangleright \ F(\psi,\theta) \text{ is concave in } \psi$
- min-max formulation similar to GAN methods but the potential ψ acts as a discriminator (no need of NN)

Gradient descent algorithm

Proposition under assumptions on g_{θ} and c, W is differentiable for a-e θ and

$$\nabla W(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{Z \sim \zeta} \left[(\partial_{\theta} g(\theta, Z))^T \nabla \psi^{*c}(P_i g(\theta, Z)) \right]$$

whenever both terms exists and with ψ^* an optimal potential

Sketch of algorithm

Repeat:

- 1 approach ψ^* with gradient ascent
- $2~\mbox{for}~z~\mbox{sampled}~\mbox{from}~\zeta~\mbox{update}~\theta$ with the stochastic gradient

Part 2 – Texture synthesis by minimization with respect to an image θ

Single scale algorithm

Let us denote $\{y_1, \ldots, y_m\}$ the patches of the target image **Proposition** for u, ψ^* s.t. $\sigma(i) = \operatorname{argmin}_j \|P_i\theta - y_j\|^2 - \psi_j^*$ unique

$$\nabla_u W(\theta) = \frac{1}{n} \sum_{i=1}^n P_i^T (P_i \theta - y_{\sigma(i)})$$

The algorithm presented before reads:

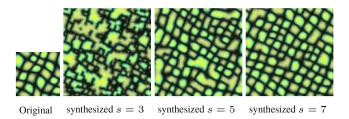
- ▶ approach ψ_k^* with gradient ascent and compute σ_k
- perform a gradient step for θ that correspond to

$$\theta_{k+1} = (1 - \lambda)\theta_k + \lambda v_k$$

where

$$v_k = \frac{1}{p} \sum_{i=1}^N P_i^T y_{\sigma^k(i)},$$

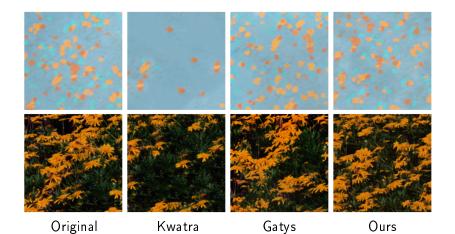
Multiscale algorithm



Take into account larger scales

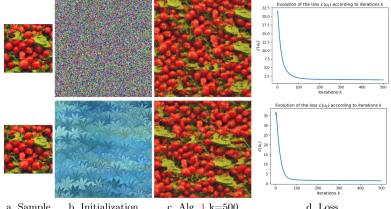
- create downsampled pyramid of images $\theta_l = S_l(\theta)$
- minimize $\sum_{l} OT(\mu_{\mathsf{fake}}^{l}, \mu_{\mathsf{target}}^{l})$

Some results



11/20

Stability results

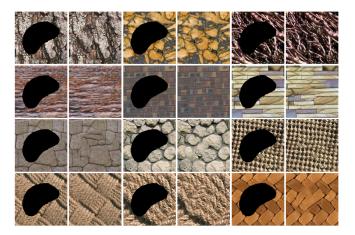


- b. Initialization
- c. Alg. 1 k=500

d. Loss

Other applications

Texture inpainting



Other applications

Texture barycenter

Summary

Advantages

- texture synthesis enforcing only patch distributions
- numerically stable method
- framework can actually be used with any feature distributions

Summary

Advantages

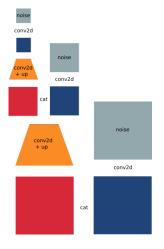
- texture synthesis enforcing only patch distributions
- numerically stable method
- framework can actually be used with any feature distributions

Downsides

- full optimization required for each synthesis
- \blacktriangleright gradient ascent algorithm for ψ may be long

Part 3 - Learning a generative model

Simply plug a generative model into the framework!



Texture Network proposed by Ulyanov is a feed-forward convolutional neural network designed for texture generation

We use this architecture here!

CNN texture synthesis based on patch distributions

Conclusion

Conclusion

- produce similar results than state-of-the-art
- generative network learned only using patch distributions

Ideas of improvement

- designing a lighter network for generating textures
- find a better multiscale representation
- mix patches with other features

Thank you for your attention!

Paper and code available on my website and github

🐑 houdard.wp.imt.fr

- **O** github.com/ahoudard/wgenpatex
 - ♥ twitter.com/AntoineHou

Appendix – Evaluation of texture synthesis

	SIFID (first max pooling inception features)						VGG score (cross-correlation of VGG features)						
	Alg. 1	Alg. 2	TexNet	SINGAN	PSGAN	TexTo	$\times 10^{3}$	Alg. 1	Alg. 2	TexNet	SINGAN	PSGAN	TexTo
1	0.43	1.13	0.11	0.93	<u>0.27</u>	1.22	11	122	233	218	299	224	260
E.	0.02	<u>0.06</u>	0.08	0.10	0.91	0.07	Sec.	6	19	9	8	512	24
and a second	0.08	0.18	0.18	<u>0.17</u>	1.14	0.18		141	151	54	207	753	152
	0.71	1.82	0.17	<u>0.37</u>	0.49	1.67		865	922	190	394	1366	1030
	<u>0.31</u>	0.80	0.14	0.39	0.70	0.79		283	331	118	227	714	367

100

CIEID (fast man mosting Incention features)

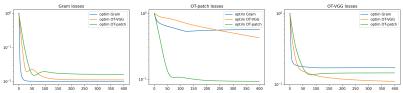
Proposed Multiscale OT distance

	Alg. 1	Alg. 2	TexNet	SINGAN	PSGAN	TexTo
P.	0.45	<u>0.48</u>	0.65	0.54	0.68	0.49
32	0.15	<u>0.16</u>	0.24	0.24	0.43	<u>0.16</u>
	0.09	<u>0.10</u>	0.17	0.26	0.34	0.11
	0.69	0.78	1.22	0.79	1.19	<u>0.75</u>
	0.35	0.38	0.57	0.46	0.66	0.38

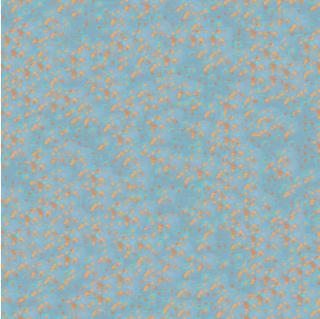
Appendix – Link with Gatys' algorithm

Gatys's texture synthesis: minimize w.r.t. image u in order to have VGG features at different scales $F_l(u)$ close to $F_l(v)$ in Gram loss.

- \blacktriangleright patch distribution and Gram loss \rightarrow does not work
- \blacktriangleright patch distribution and OT loss \rightarrow our algorithm
- \blacktriangleright VGG feature distribution and Gram loss \rightarrow Gatys
- \blacktriangleright VGG feature distribution and OT loss \rightarrow extension of our idea



Appendix – Arbitrarily large generation



Appendix - Link with WGAN

 \blacktriangleright in WGAN duality of W_1 distance yields the formulation

$$\min_{\theta} \max_{\psi \in Lip_1} \mathbf{E}_{\nu} \left[\psi(Y) \right] - \mathbf{E}_{\zeta} \left[\psi(g_{\theta}(Z)) \right]$$

here $c(x,y) = \|x-y\|, \ c-conv(Y) = Lip_1(Y) \ \text{and} \ \psi^c = -\psi$

Question how to compute $\psi^*?$ WGAN approach the potential with a deep neural network d_η $_{\rm Issues}$

- enforcing Lip_1 is hard
- the neural network may fail to approach ψ^*
- a lot of parameters

Our approach allows to use more general OT cost and get rid of the neural network for ψ !