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Patch-based Texture Synthesis

Represent a target texture u with its patch distribution

µtarget =
1

m

m∑
i=1

δPiu

with Pi linear operator that extract the i-th patch
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Patch-based Texture Synthesis

Main idea Find or generate an image s.t. µfake is close to µtarget

Two scenarios:

I Single image: µfake =
1
n

∑
δPiθ discrete (part 2)

I Generative model: µfake =
1
n

∑
(Pi ◦ gθ)]ζ continuous (part 3)

close to → Optimal Transport cost! (Part 1)
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Part 1 � Theoretical results
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Optimal Transport

De�nition OTc(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y)

Dual formulation OTc(µ, ν) = max
ψ∈L∞

EX∼µ [ψ
c(X)]+EY∼ν [ψ(Y )]

where ψc(x) = miny [c(x, y)− ψ(y)] is the c-transform of ψ
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Formulation in our semi-discrete case

Goal minimize w.r.t. θ

W (θ) := OTc(µfake(θ), µtarget) = max
ψ∈Rm

F (ψ, θ)

where

F (ψ, θ) =
1

n

n∑
i=1

EZ∼ζ

ψc(Pi ◦ gθ(Z)) + 1

m

m∑
j=1

ψj



Remarks

I F (ψ, θ) is concave in ψ

I min-max formulation similar to GAN methods but the
potential ψ acts as a discriminator (no need of NN)
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Gradient descent algorithm

Proposition under assumptions on gθ and c, W is di�erentiable for
a-e θ and

∇W (θ) =
1

n

n∑
i=1

EZ∼ζ
[
(∂θg(θ, Z))

T∇ψ∗c(Pig(θ, Z))
]

whenever both terms exists and with ψ∗ an optimal potential

Sketch of algorithm

Repeat:

1 approach ψ∗ with gradient ascent

2 for z sampled from ζ update θ with the stochastic gradient
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Part 2 � Texture synthesis by minimization

with respect to an image θ
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Single scale algorithm

Let us denote {y1, . . . , ym} the patches of the target image

Proposition for u, ψ∗ s.t. σ(i) = argminj ‖Piθ− yj‖2−ψ∗j unique

∇uW (θ) =
1

n

n∑
i=1

P Ti (Piθ − yσ(i))

The algorithm presented before reads:

I approach ψ∗k with gradient ascent and compute σk
I perform a gradient step for θ that correspond to

θk+1 = (1− λ)θk + λvk

where

vk =
1

p

N∑
i=1

P Ti yσk(i),
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Multiscale algorithm

Take into account larger scales

I create downsampled pyramid of images θl = Sl(θ)

I minimize
∑

lOT (µfake
l, µtarget

l)
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Some results

Original Kwatra Gatys Ours
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Stability results
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Other applications

Texture inpainting

13/20



Other applications

Texture barycenter
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Summary

Advantages

I texture synthesis enforcing only patch distributions

I numerically stable method

I framework can actually be used with any feature distributions

+ →

Downsides

I full optimization required for each synthesis

I gradient ascent algorithm for ψ may be long

15/20



Summary

Advantages

I texture synthesis enforcing only patch distributions

I numerically stable method

I framework can actually be used with any feature distributions

+ →

Downsides

I full optimization required for each synthesis

I gradient ascent algorithm for ψ may be long

15/20



Part 3 - Learning a generative model
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Simply plug a generative model into the framework!

Texture Network proposed by
Ulyanov is a feed-forward convolu-
tional neural network designed for
texture generation

We use this architecture here!

17/20



CNN texture synthesis based on patch distributions
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Conclusion

Conclusion

I produce similar results than state-of-the-art

I generative network learned only using patch distributions

Ideas of improvement

I designing a lighter network for generating textures

I �nd a better multiscale representation

I mix patches with other features
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Thank you for your attention!

Paper and code available on my website and github

m houdard.wp.imt.fr

� github.com/ahoudard/wgenpatex

7 twitter.com/AntoineHou
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Appendix � Evaluation of texture synthesis
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Appendix � Link with Gatys' algorithm

Gatys's texture synthesis: minimize w.r.t. image u in order to have
VGG features at di�erent scales Fl(u) close to Fl(v) in Gram loss.

I patch distribution and Gram loss → does not work

I patch distribution and OT loss → our algorithm

I VGG feature distribution and Gram loss → Gatys

I VGG feature distribution and OT loss → extension of our idea
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Appendix � Arbitrarily large generation
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Appendix � Link with WGAN

I in WGAN duality of W1 distance yields the formulation

min
θ

max
ψ∈Lip1

Eν [ψ(Y )]−Eζ [ψ(gθ(Z))]

here c(x, y) = ‖x− y‖, c− conv(Y ) = Lip1(Y ) and ψc = −ψ

Question how to compute ψ∗?

WGAN approach the potential with a deep neural network dη
Issues

- enforcing Lip1 is hard

- the neural network may fail to approach ψ∗

- a lot of parameters

Our approach allows to use more general OT cost and get rid of
the neural network for ψ!
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