On the use of Gaussian models on patches for image denoising

Antoine Houdard

Young Researchers in Imaging Seminars Institut Henri Poincaré

Wednesday, February 27th

Digital photography: noise in images

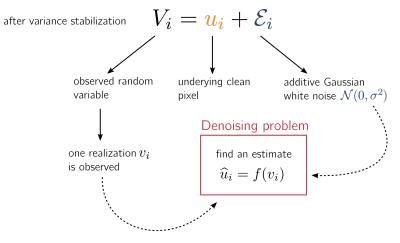
Different ISO settings with constant exposure - 25600 ISO

Digital photography: noise in images

Different ISO settings with constant exposure - 200 ISO

Noise modeling and denoising problem

Noise modeling - the additive Gaussian white noise model

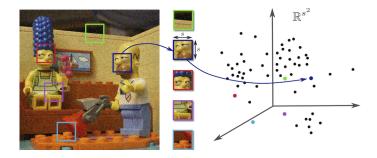


Need more realizations or prior information

Patch-based image denoising

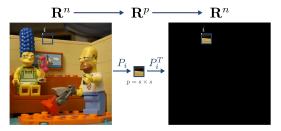
• Many denoising methods rely on the description of the image by patches:

- * NL-means Buades, Coll, Morel (2005),
- * BM3D Dabov, Foi, Katkovnik (2007),
- * PLE Yu, Sapiro, Mallat (2012),
- * NL-Bayes Lebrun, Buades, Morel (2012),
- * LDMM Shi, Osher, Zhu (2017),
- ★ and many others...



Patch-based image denoising

 \star Patch extraction operators



 \star Noise model on the image $V ~=~ u ~+~ \mathcal{E} ~\longrightarrow~ \mathcal{N}(0,\sigma^2 \mathrm{I}_n)$

Hypothesis: the N_i are *i.i.d.*

The Bayesian paradigm

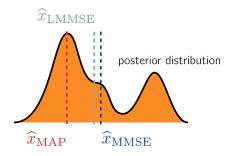
- * We consider each clean patch x as a realization of a random vector X with *prior* distribution P_X .
- \rightarrow The Gaussian white noise model rewrites:

$$\mathbf{F} = \mathbf{F} + \mathbf{F}$$
$$Y = X + N \sim \mathcal{N}(0, \sigma^2 \mathbf{I}),$$

then Bayes' theorem yields the posterior distribution:

$$P_{X|Y}(x|y) = \frac{P_{Y|X}(y|x)P_X(x)}{P_Y(y)}.$$

Patch-based image denoising



Denoising strategies

- $\hat{x} = \mathbf{E}[X|Y = y]$ the minimum mean square error (MMSE) estimator
- $\hat{x} = Dy + \alpha$ s.t. D and α minimize $\mathbf{E}[\|DY + \alpha X\|^2]$ which is the linear MMSE also called Wiener estimator
- $\hat{x} = \arg \max_{x \in \mathbf{R}^p} p(x|y)$ the maximum *a posteriori* (MAP)

1. Gaussian priors for X: why are they widely used?

2. How to infer parameters in high dimension?

3. Presentation of the HDMI method.

4. Limitations of model-based patch-based approaches.

1. Modeling the clean patches X_i

In the literature

- Iocal Gaussian models
 - * patch-based PCA Deledalle, Salmon, Dalalyan (2011),
 - * NL-bayes Lebrun, Buades, Morel (2012),

* ...

Gaussian mixture models

- * EPLL Zoran, Weiss (2011),
- * PLE Yu, Sapiro, Mallat (2012),
- * Single-frame Image Denoising Teodoro, Almeida, Figueiredo (2015).

* ...

Why Gaussian models are so widely used?

Gaussian model

If $X \sim \mathcal{N}(\mu, \Sigma)$ then

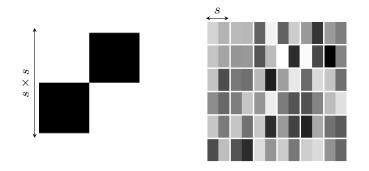
$$\widehat{x}_{\mathsf{MMSE}} = \widehat{x}_{\mathsf{Wiener}} = \widehat{x}_{\mathsf{MAP}} = \mu + \Sigma (\Sigma + \sigma^2 \mathbf{I})^{-1} (y - \mu).$$

Gaussian mixture model (GMM)

If
$$X \sim \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)$$
 then

$$\hat{x}_{\mathsf{MMSE}} = \sum_{k=1}^{K} \mathbb{P}(Z = k | Y = y) \left[\mu_k + \Sigma_k (\Sigma_k + \sigma^2 \mathbf{I})^{-1} (y - \mu_k) \right].$$

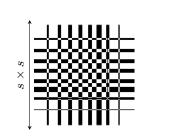
The covariance matrix in Gaussian models and GMM encodes geometric structures up to some contrast change:

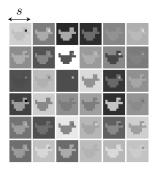


Covariance matrix Σ .

Patches generated from $\mathcal{N}(m, \Sigma)$.

The covariance matrix in Gaussian models and GMM encodes geometric structures up to some contrast change:



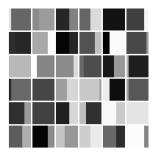


Covariance matrix Σ .

Patches generated from $\mathcal{N}(m, \Sigma)$.

What do Gaussian models encode?

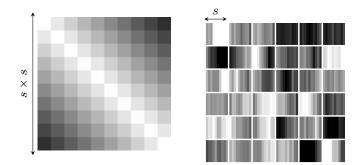
A covariance matrix cannot encode multiple translated versions of a structure:



A set of $10000\ {\rm patches}$ representing edges with random grey levels and random translations.

What do Gaussian models encode?

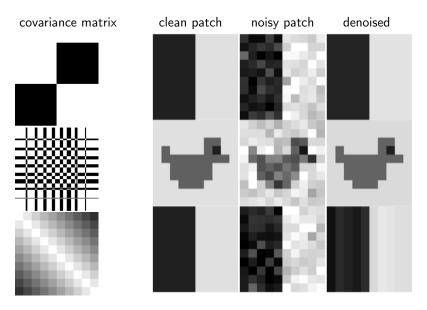
A covariance matrix cannot encode multiple translated versions of a structure:



Covariance matrix Σ .

Patches generated from $\mathcal{N}(m, \Sigma)$.

Restore with the right model



Modeling the patches with Gaussian models is a good idea:

- They are convenient for computing the estimates;
- They are able to encode the geometric structures of the patches.

Need of good parameters for the model!

2. How to infer parameters in high dimension?

Gaussian model case: $X \sim \mathcal{N}(\mu_X, \Sigma_X)$

observed data $\{y_1, \ldots, y_n\}$ sampled from $Y = X + N \sim \mathcal{N}(\mu_Y, \Sigma_Y)$. The maximization of the likelihood

$$\mathcal{L}(y;\theta) = \frac{1}{2} \sum_{i=1}^{n} (y - \mu_Y)^T \Sigma_Y^{-1} (y - \mu_Y),$$

yields the Maximum Likelihood estimators (MLE)

$$\hat{\mu}_Y = \frac{1}{n} \sum_{i=1}^n y_i, \quad \hat{\Sigma}_Y = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\mu}_Y)^T (y_i - \hat{\mu}_Y).$$

Since $\Sigma_Y = \Sigma_X + \sigma^2 \mathbf{I}_p$, it yields

$$\hat{\mu}_X = \hat{\mu}_Y, \quad \hat{\Sigma}_X = \hat{\Sigma}_Y - \sigma^2 \mathbf{I}_p.$$

Need to group the patches representing the same structure together

• For instance with $\|\cdot\|_2 \rightarrow$ not robust for strong noise:

Gaussian Mixture Models naturally provide a (more robust) grouping!

Gaussian Mixture Model case: $X \sim \sum \pi_k \mathcal{N}(\mu_k, \Sigma_k)$

This implies a GMM on the noisy patches $Y \sim \sum \pi_k \mathcal{N}(\mu_k, S_k)$

EM algorithm: maximize the conditional expectation of the complete log-likelihood:

$$\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik} \log \left(\pi_k g\left(y_i; \theta_k \right) \right),$$

where $t_{ik} = E \left[Z = k | y_i, \theta^* \right]$ and θ^* a given set of parameters.

- E-step estimation of t_{ik} knowing the current parameters
- M-step compute maximum likelihood estimators (MLE) for parameters:

$$\begin{split} \widehat{\pi}_k &= \frac{n_k}{n}, \qquad \widehat{\mu}_k = \frac{1}{n_k} \sum_i t_{ik} y_i, \quad \widehat{S}_k = \frac{1}{n_k} \sum_i t_{ik} (y_i - \mu_k) (y_i - \mu_k)^T, \\ \text{with } n_k &= \sum_i t_{ik}. \end{split}$$

With all these ingredients, we can design a denoising algorithm:

- **Extract** the patches from the image with *P_i* operators
- \blacksquare Learn a GMM for the clean patches X from the observations of Y
- Denoise each patch with the MMSE
- Aggregate all the denoised patches with the P_i^T operators

With all these ingredients, we can design a denoising algorithm:

- Extract the patches from the image with P_i operators
- \blacksquare Learn a GMM for the clean patches X from the observations of Y
- Denoise each patch with the MMSE
- Aggregate all the denoised patches with the P_i^T operators

But...

Parameter estimation for Gaussian models or GMMs suffers from the curse of dimensionality

The number of samples needed for the estimation of a parameter grows exponentially with the dimension

We consider patches of size $p=10\times 10$ \rightarrow High dimension.

 \rightarrow the estimation of sample covariance matrices is difficult: ill conditioned, singular...

We consider patches of size $p = 10 \times 10 \rightarrow \text{High dimension}$.

The curse of dimensionality in patches space

 \rightarrow the estimation of sample covariance matrices is difficult: ill conditioned, singular...

In the literature, this issue is generally worked around by

- the use of small patches $(3 \times 3 \text{ or } 5 \times 5)$ NL-Bayes [Lebrun, Buades, Morel]
- adding εI to singular covariance matrices PLE [Yu, Sapiro, Mallat]
- fixing a lower dimension for covariance matrices S-PLE [Wang, Morel]

But, there is no reason to be afraid of this curse!

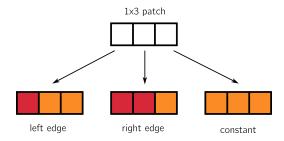
In high-dimensional spaces, it is easier to separate data:

Many patches represent structures that live locally in a low dimensional space: using this latent lower dimension allows to group the patches in a more robust way.

This "bless" is used in clustering algorithms designed for high-dimension High-Dimensional Data Clustering [Bouveyron, Girard, Schmid] 2007

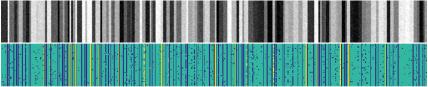
The bless of dimensionality?

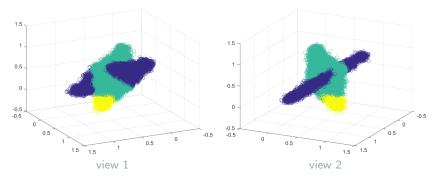
an image made of vertical stripes of width >2 pixels with random grey levels.



The bless of dimensionality?

An illustration in the context of patches:

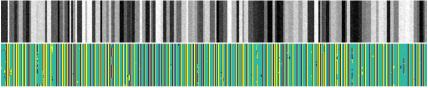


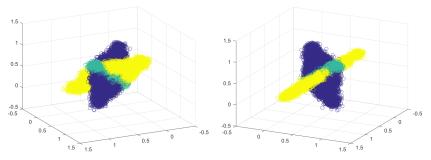


In the patch space, we cannot distinguish three classes

The bless of dimensionality?

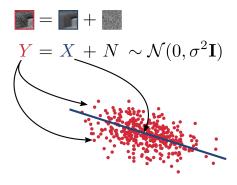
An illustration in the context of patches:





view 1 of the first 3 pixels view 2 of the first 3 pixels The algorithm is now able to separate these classes!

3. High-Dimensional Mixture Models for Image Denoising



model the clean patches X

- + Z latent random variable indicating group membership
- + X lives in a low-dimensional subspace which is specific to its latent group:

$$X_{|Z=k} \sim \mathcal{N}(\mu_k, U_k \Lambda_k U_k^T)$$

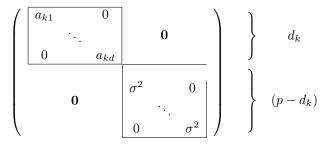
where U_k is a $p \times d_k$ orthogonal matrix and $\Lambda_k = \text{diag}(\lambda_1^k, \dots, \lambda_{d_k}^k)$ a diagonal matrix of size $d_k \times d_k$.

Induced model on the noisy patches Y

The model on X implies that Y follows a full rank GMM

$$p(y) = \sum_{k=1}^{K} \pi_k g\left(y; \mu_k, \Sigma_k\right)$$

where $U_k \Sigma_k U_k^t$ has the specific structure:



where $a_{kj} = \lambda_j^k + \sigma^2$ and $a_{kj} > \sigma^2$, for $j = 1, \dots, d_k$.

The HDMI model being known, each patch is denoised with the MMSE

$$\hat{x}_i = \mathbf{E}[X|Y = y_i] = \sum_{k=1}^{K} t_{ik}\psi_k(y_i)$$

where t_{ik} is the posterior probability for the patch y_i to belong in the $k\mbox{-th}$ group and

$$\psi_k(y_i) = \mu_k + U_k \begin{pmatrix} \frac{a_{k1} - \sigma^2}{a_{k1}} & 0\\ & \ddots & \\ 0 & & \frac{a_{kd_k} - \sigma^2}{a_{kd_k}} \end{pmatrix} U_k^T(y_i - \mu_k).$$

with an EM algorithm, the parameters are updated during the $\ensuremath{\mathsf{M}}\xspace$ states are updated as the states are updated during the states are updated as the states are up

- \hat{U}_k is formed by the d_k first eigenvectors of the sample covariance matrix
- \hat{a}_{kj} is the *j*-th eigenvalue of the sample covariance matrix

with an EM algorithm, the parameters are updated during the $\ensuremath{\mathsf{M}}\xspace$ -step :

- \hat{U}_k is formed by the d_k first eigenvectors of the sample covariance matrix
- \hat{a}_{kj} is the *j*-th eigenvalue of the sample covariance matrix

The hyper-parameters K and d_1, \ldots, d_K cannot be determined by maximizing the log-likelihood since they control the model complexity.

 \rightarrow Each set of K and d_1, \ldots, d_K corresponds to a different model.

We propose to set K at a given value and to choose the intrinsic dimensions d_k :

- using an heuristic that links d_k with the noise variance σ^2 when known;
- using a model selection tool in order to select the best variance σ^2 when unknown.

With d_k begin fixed, the MLE for the noise variance in the kth group is

$$\widehat{\sigma}_{|k}^2 = \frac{1}{p - d_k} \sum_{j=d_k+1}^p \widehat{a}_{kj}.$$

When the noise variance σ is known, this gives us the following heuristic:

Heuristic. Given a value of σ^2 and for k = 1, ..., K, we estimate the dimension d_k by

$$\widehat{d_k} = \operatorname{argmin}_d \left| \frac{1}{p-d} \sum_{j=d+1}^p \widehat{a}_{kj} - \sigma^2 \right|.$$

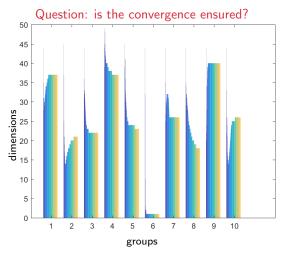
Estimation of intrinsic dimensions – convergence

By re-evaluating the dimensions, we change the model at each M-step!

Question: is the convergence ensured?

Estimation of intrinsic dimensions – convergence

By re-evaluating the dimensions, we change the model at each M-step!



the dimensions stabilize \rightarrow there exists an iteration where the algorithm becomes a classic EM.

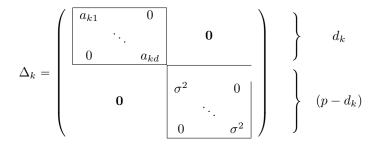
Each value of σ yields a different model, we propose to select the one with the better BIC (Bayesian Information Criterion)

BIC(
$$\mathcal{M}$$
) = $\ell(\hat{\theta}) - \frac{\xi(\mathcal{M})}{2}\log(n)$,

where $\xi(\mathcal{M})$ is the complexity of the model.

Why BIC is well-adapted for the selection of σ ?

- If σ is too small, the likelihood is good but the complexity explodes;
- if σ is too high, the complexity is low but the likelihood is bad.



Why BIC is well-adapted for the selection of σ ?

- If σ is too small, the likelihood is good but the complexity explodes;
- if σ is too high, the complexity is low but the likelihood is bad.

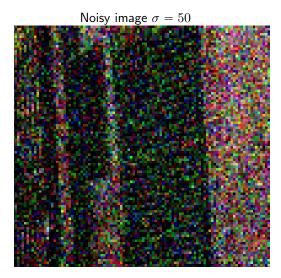
We presented the HDMI model for image denoising:

- which models the full process of the generation of the noisy patches;
- a fully statistical modeling without the usual "denoising cuisine";
- can be used in a "blind" way thanks to BIC selection;
- attains state-of-the-art performances!

Noisy image $\sigma = 50$

Denoised with HDMI K = 50, psnr = 27.28dB

Clean image



Denoised with BM3D, Foi et al. 2007, psnr = 27.17dB

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.58dB

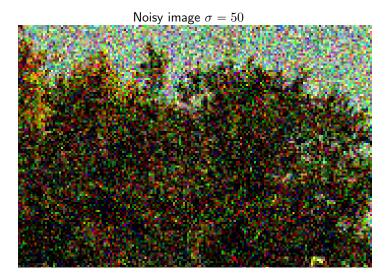
Denoised with HDMI K = 50, psnr = 27.28dB

Noisy image $\sigma=50$

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB

Denoised with HDMI K = 50, psnr = 27.05dB



Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB

Denoised with HDMI K = 50, psnr = 27.05dB

4. Limitations of denoising in the patch-space

The lower bound for patch-based image denoising

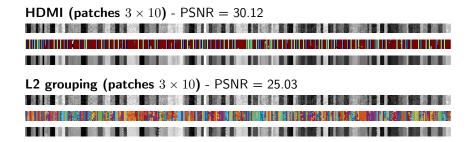
"Is denoising dead" [Chatterjee, Milanfar] 2010 proposed a lower bound for patch-based image denoising.

In this context, denoting m_k the number of patches in the k-th group and N the total number of patches, the bound for HDMI is

$$\begin{split} \mathbf{E}\left[\|u - \hat{u}_{\mathsf{HDMI}}\|^{2}\right] &\geq \frac{1}{N}\sum_{k=1}^{K}m_{k}\frac{\mathrm{Tr}(\Sigma_{k})\sigma^{2}}{p + \sigma^{2}},\\ &\geq C\frac{\sigma^{2}}{N(p + \sigma^{2})}\sum_{k=1}^{K}m_{k}\\ &= C\frac{\sigma^{2}}{p + \sigma^{2}} \quad \text{independent of N}. \end{split}$$

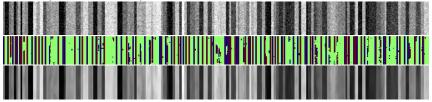
even if the number of samples increases by stretching the image size to infinity, the noise variance cannot be reduced more than a factor p.

The lower bound for patch-based image denoising



The lower bound for patch-based image denoising

HDMI (patches 3×10) - PSNR = 30.27



L2 grouping (patches 3×10) - PSNR = 30.84

cropped: actual images height is 500 pixels.

The low frequency noise

Denoised with HDMI K = 50, psnr = 36.47 dB

Removing low frequency noise by denoising the DC component

• Define the centered observed random variable $Y_i^c = Y_i - \overline{Y}_i \mathbf{1}_p$, where

$$\bar{Y}_i = \frac{1}{p} \sum_{j=1}^p Y_i(j),$$

is the DC component of the patch.

The noise model can then be divided into the two following problems

$$\bar{Y}_i = \bar{X}_i + \bar{N}_i \in \mathbf{R},\tag{1}$$

$$Y_i^c = X_i^c + N_i^c \in \mathbf{R}^p.$$
⁽²⁾

Removing low frequency noise by denoising the DC component

The DC component can be reshaped as an image

- Extract patches from this image yields additive Gaussian noise problem with colored noise
- A change of basis brings us back to an additive white Gaussian noise → can be denoised with the HDMI method

Results

Noisy with $\sigma=50$

Denoised with HDMI K = 50, psnr = 36.47 dB

Results

+ corrected DC component (HDMI K = 30), psnr = 36.90 dB

Results

Denoised with FFDNet, Zhang et al. 2018, psnr = 36.72dB

We explored model-based patch-based image denoising and we designed the HDMI model that performs state-of-the-art results. This work open several questions and future works:

- Statistical modeling versus deep learning?
 - $\rightarrow\,$ Statistical modeling is not dead yet! \rightarrow complementary approaches
- Lower-bound for the denoising quality
 - \rightarrow change of paradigm: use the HDMI model in a global way.
- Some miss-classifications when the noise variance is high → use of robust estimators such as the geometric median.
- Extension to other image problem
 - $\rightarrow\,$ missing pixels, inpainting, texture generation.

Thank you for your attention!

Any question?

More information on the HDMI model and my new preprint: houdard.wp.imt.fr

Aggregation problem

Each pixel belongs in p patches:

In all the experiments here: uniform aggregation.

In the literature: there exist different aggregation methods \rightarrow able to improve visual results but in many cases, the final pixel is still obtained from a fixed number of realizations.

Other inverse problem : missing pixels

70% missing pixels

EM is well-adapted for missing data \rightarrow the model can be easily adapted for missing pixel restoration

Other inverse problem : missing pixels

restored with HDMI

EM is well-adapted for missing data \rightarrow the model can be easily adapted for missing pixel restoration

Regularizing effect of the dimension reduction

Input u noisy image, p patch size, K number of groups, $\{\sigma_1, \ldots, \sigma_m\}$ list of standard deviation.

Output \hat{u} denoised image.

```
Extract \{y_1, \ldots, y_n\} patches from u;
```

for $\sigma = \sigma_1, \ldots, \sigma_m$ do

Initialization few iteration of k-means.

 $dl \leftarrow \infty$.

while $dl > \epsilon$ do

M-step update parameters and dimensions d_k

E-step compute t_{ik} .

update the log-likelihood l and compute the relative error dl = |l - lex|/|l|. $lex \leftarrow l.$

end while

compute the BIC for the model associated with $\boldsymbol{\sigma}$

end for

select the model with the better BIC.

compute denoised patches $\{x_1, \ldots, x_n\}$ with conditional expectation;

aggregate patches x_i in order to recover the denoised image v.

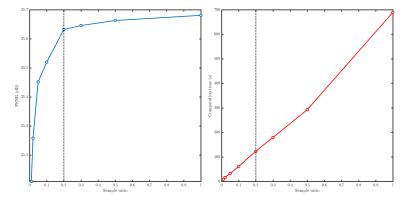


Figure: Effect of the subsampling on the computing time and the denoising performance with HDMI. Left: PSNR versus sampling size. Right: Computation time versus same sampling size. Dotted-lines: 20% subsampling.

Influence of the number of group K

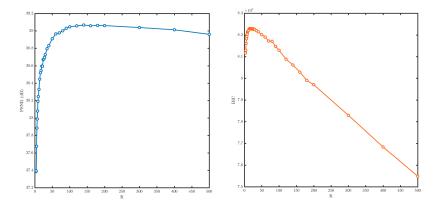


Figure: Denoising results (PSNR) with regard to K (left) and choice of K with BIC (right).

