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Digital photography: noise in images

Different ISO settings with constant exposure – 25600 ISO
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Digital photography: noise in images

Different ISO settings with constant exposure – 200 ISO
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Noise modeling and denoising problem
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Patch-based image denoising

� Many denoising methods rely on the description of the image by patches:
‹ NL-means Buades, Coll, Morel (2005),
‹ BM3D Dabov, Foi, Katkovnik (2007),
‹ PLE Yu, Sapiro, Mallat (2012),
‹ NL-Bayes Lebrun, Buades, Morel (2012),
‹ LDMM Shi, Osher, Zhu (2017),
‹ and many others...
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Patch-based image denoising

Hypothesis: the Ni are i.i.d.
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Patch-based image denoising

The Bayesian paradigm

‹ We consider each clean patch x as a realization of a random vector X
with prior distribution PX .

Ñ The Gaussian white noise model rewrites:

,

then Bayes’ theorem yields the posterior distribution:

PX|Y px|yq “
PY |Xpy|xqPXpxq

PY pyq
.
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Patch-based image denoising

Denoising strategies

�
px “ ErX|Y “ ys the minimum mean square error (MMSE) estimator

�
px “ Dy ` α s.t. D and α minimize Er}DY ` α´X}2s which is the
linear MMSE also called Wiener estimator

�
px “ arg max

xPRp
ppx|yq the maximum a posteriori (MAP)
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Outline

1. Gaussian priors for X: why are they widely used?

2. How to infer parameters in high dimension?

3. Presentation of the HDMI method.

4. Limitations of model-based patch-based approaches.
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1. Modeling the clean patches Xi
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Choice of the model

In the literature

� local Gaussian models
‹ patch-based PCA Deledalle, Salmon, Dalalyan (2011),
‹ NL-bayes Lebrun, Buades, Morel (2012),
‹ ...

� Gaussian mixture models
‹ EPLL Zoran, Weiss (2011),
‹ PLE Yu, Sapiro, Mallat (2012),
‹ Single-frame Image Denoising Teodoro, Almeida, Figueiredo (2015).
‹ ...

Why Gaussian models are so widely used?
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Gaussian is convenient

� Gaussian model

If X „ N pµ,Σq then

pxMMSE “ pxWiener “ pxMAP “ µ` ΣpΣ` σ2Iq´1py ´ µq.

� Gaussian mixture model (GMM)

If X „
řK
k“1 πkN pµk,Σkq then

pxMMSE “

K
ÿ

k“1

PpZ “ k|Y “ yq
“

µk ` ΣkpΣk ` σ
2Iq´1py ´ µkq

‰

.
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What do Gaussian models encode?

The covariance matrix in Gaussian models and GMM encodes geometric
structures up to some contrast change:

s
ˆ
s

s

Covariance matrix Σ. Patches generated from N pm,Σq.
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What do Gaussian models encode?

A covariance matrix cannot encode multiple translated versions of a
structure:

A set of 10000 patches representing edges with random grey levels and
random translations.
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Restore with the right model

covariance matrix clean patch noisy patch denoised
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Conclusion

Modeling the patches with Gaussian models is a good idea:

� They are convenient for computing the estimates;

� They are able to encode the geometric structures of the patches.

Need of good parameters for the model!
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2. How to infer parameters in high
dimension?
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Parameters inference

Gaussian model case: X „ N pµX ,ΣXq

observed data ty1, . . . , ynu sampled from Y “ X `N „ N pµY ,ΣY q.

The maximization of the likelihood

Lpy; θq “
1

2

n
ÿ

i“1

py ´ µY q
TΣY

´1
py ´ µY q,

yields the Maximum Likelihood estimators (MLE)

pµY “
1

n

n
ÿ

i“1

yi, pΣY “
1

n

n
ÿ

i“1

pyi ´ pµY q
T pyi ´ pµY q.

Since ΣY “ ΣX ` σ
2Ip, it yields

pµX “ pµY , pΣX “ pΣY ´ σ
2Ip.
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How to group patches?

Need to group the patches representing the same structure together

� For instance with } ¨ }2 Ñ not robust for strong noise:

� Gaussian Mixture Models naturally provide a (more robust) grouping!
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Parameters inference

Gaussian Mixture Model case: X „
ř

πkN pµk,Σkq

This implies a GMM on the noisy patches Y „
ř

πkN pµk, Skq

EM algorithm: maximize the conditional expectation of the complete
log-likelihood:

K
ÿ

k“1

n
ÿ

i“1

tik log pπkg pyi; θkqq ,

where tik “ E rZ “ k|yi, θ
˚s and θ˚ a given set of parameters.

� E-step estimation of tik knowing the current parameters
� M-step compute maximum likelihood estimators (MLE) for parameters:

pπk “
nk
n
, pµk “

1

nk

ÿ

i

tikyi, pSk “
1

nk

ÿ

i

tikpyi ´ µkqpyi ´ µkq
T ,

with nk “
ř

i tik.
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Sketch of a denoising algorithm

With all these ingredients, we can design a denoising algorithm:

� Extract the patches from the image with Pi operators

� Learn a GMM for the clean patches X from the observations of Y

� Denoise each patch with the MMSE

� Aggregate all the denoised patches with the PTi operators

But...
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The curse of dimensionality

Parameter estimation for Gaussian models or GMMs suffers from the curse
of dimensionality

The number of samples needed for the estimation of a parameter grows
exponentially with the dimension
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The curse of dimensionality in patches space

We consider patches of size p “ 10ˆ 10 Ñ High dimension.

Ñ the estimation of sample covariance matrices is difficult: ill conditioned,
singular...

In the literature, this issue is generally worked around by
� the use of small patches (3ˆ 3 or 5ˆ 5) NL-Bayes [Lebrun, Buades, Morel]

� adding εI to singular covariance matrices PLE [Yu, Sapiro, Mallat]

� fixing a lower dimension for covariance matrices S-PLE [Wang, Morel]

But, there is no reason to be afraid of this curse!
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The bless of dimensionality?

In high-dimensional spaces, it is easier to separate data:

Many patches represent structures that live locally in a low dimensional
space: using this latent lower dimension allows to group the patches in a
more robust way.

This “bless” is used in clustering algorithms designed for high-dimension
High-Dimensional Data Clustering [Bouveyron, Girard, Schmid] 2007
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The bless of dimensionality?

An illustration in the context of patches:

an image made of vertical stripes of width >2 pixels with random grey levels.
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The bless of dimensionality?
An illustration in the context of patches:

view 1 view 2

In the patch space, we cannot distinguish three classes
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The bless of dimensionality?

An illustration in the context of patches:

view 1 of the first 3 pixels view 2 of the first 3 pixels
The algorithm is now able to separate these classes!
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3. High-Dimensional Mixture Models
for Image Denoising
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HDMI: presentation of the model

� model the clean patches X

` Z latent random variable indicating group membership

` X lives in a low-dimensional subspace which is specific to its latent group:

X|Z“k „ N pµk, UkΛkU
T
k q

where Uk is a pˆ dk orthogonal matrix and Λk “ diagpλk1 , . . . , λ
k
dk
q a

diagonal matrix of size dk ˆ dk.
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HDMI: induced model

� Induced model on the noisy patches Y

The model on X implies that Y follows a full rank GMM

ppyq “
K
ÿ

k“1

πkg py;µk,Σkq

where UkΣkU
t
k has the specific structure:

¨
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˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ak1 0
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‹
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pp´ dkq

where akj “ λkj ` σ
2 and akj ą σ2, for j “ 1, . . . , dk.
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Denoising with the HDMI model

The HDMI model being known, each patch is denoised with the MMSE

pxi “ ErX|Y “ yis “
K
ÿ

k“1

tikψkpyiq

where tik is the posterior probability for the patch yi to belong in the k-th
group and

ψkpyiq “ µk ` Uk

¨

˚

˚

˝

ak1´σ
2

ak1
0

. . .

0
akdk

´σ2

akdk

˛

‹

‹

‚

UTk pyi ´ µkq.
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Model inference

with an EM algorithm, the parameters are updated during the M-step :

� pUk is formed by the dk first eigenvectors of the sample covariance matrix

�
pakj is the j-th eigenvalue of the sample covariance matrix

The hyper-parameters K and d1, . . . , dK cannot be determined by
maximizing the log-likelihood since they control the model complexity.

Ñ Each set of K and d1, . . . , dK corresponds to a different model.
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Model inference

We propose to set K at a given value and to choose the intrinsic dimensions
dk:

� using an heuristic that links dk with the noise variance σ2 when known;

� using a model selection tool in order to select the best variance σ2 when
unknown.
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Estimation of intrinsic dimensions – known variance

With dk begin fixed, the MLE for the noise variance in the kth group is

pσ2
|k “

1

p´ dk

p
ÿ

j“dk`1

pakj .

When the noise variance σ is known, this gives us the following heuristic:

Heuristic. Given a value of σ2 and for k “ 1, ...,K, we estimate the
dimension dk by

xdk “ argmind

ˇ

ˇ

ˇ

ˇ

ˇ

1

p´ d

p
ÿ

j“d`1

pakj ´ σ
2

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Estimation of intrinsic dimensions – convergence
By re-evaluating the dimensions, we change the model at each M-step!

Question: is the convergence ensured?

di
m

en
si
on

s

groups

the dimensions stabilize Ñ there exists an iteration where the algorithm
becomes a classic EM.
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Estimation of intrinsic dimensions – unknown variance

Each value of σ yields a different model, we propose to select the one with
the better BIC (Bayesian Information Criterion)

BICpMq “ `pθ̂q ´
ξpMq

2
logpnq,

where ξpMq is the complexity of the model.

Why BIC is well-adapted for the selection of σ?

� If σ is too small, the likelihood is good but the complexity explodes;
� if σ is too high, the complexity is low but the likelihood is bad.
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Estimation of intrinsic dimensions – unknown variance
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Why BIC is well-adapted for the selection of σ?

� If σ is too small, the likelihood is good but the complexity explodes;
� if σ is too high, the complexity is low but the likelihood is bad.
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Summary: the HDMI algorithm

We presented the HDMI model for image denoising:

� which models the full process of the generation of the noisy patches;

� a fully statistical modeling without the usual “denoising cuisine”;

� can be used in a “blind” way thanks to BIC selection;

� attains state-of-the-art performances!
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Numerical Experiments

Clean image
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Numerical Experiments

Noisy image σ “ 50
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Numerical Experiments

Denoised with BM3D, Foi et al. 2007, psnr = 27.17dB
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Numerical Experiments

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.58dB
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Numerical Experiments

Denoised with HDMI K “ 50, psnr = 27.28dB
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Numerical Experiments – zooms

Clean image
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Numerical Experiments

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB
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Numerical Experiments

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB
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Numerical Experiments

Denoised with HDMI K “ 50, psnr = 27.05dB
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Numerical Experiments – zooms

Denoised with HDMI K “ 50, psnr = 27.05dB
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4. Limitations of denoising in the
patch-space
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The lower bound for patch-based image denoising

“Is denoising dead” [Chatterjee, Milanfar] 2010 proposed a lower bound for
patch-based image denoising.

In this context, denoting mk the number of patches in the k-th group and
N the total number of patches, the bound for HDMI is

E
“

}u´ puHDMI}
2
‰

ě
1

N

K
ÿ

k“1

mk
TrpΣkqσ

2

p` σ2
,

ě C
σ2

Npp` σ2q

K
ÿ

k“1

mk

“ C
σ2

p` σ2
independent of N.

even if the number of samples increases by stretching the image size to
infinity, the noise variance cannot be reduced more than a factor p.
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The lower bound for patch-based image denoising

HDMI (patches 3ˆ 10) - PSNR = 30.12

L2 grouping (patches 3ˆ 10) - PSNR = 25.03
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The lower bound for patch-based image denoising

HDMI (patches 3ˆ 10) - PSNR = 30.27

L2 grouping (patches 3ˆ 10) - PSNR = 30.84

cropped: actual images height is 500 pixels.
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The low frequency noise

Denoised with HDMI K “ 50, psnr = 36.47 dB
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Removing low frequency noise by denoising the DC
component

� Define the centered observed random variable Y ci “ Yi ´ sYi1p, where

sYi “
1

p

p
ÿ

j“1

Yipjq,

is the DC component of the patch.

� The noise model can then be divided into the two following problems

sYi “ sXi ` sNi P R, (1)

Y ci “ Xc
i `N

c
i P R

p. (2)
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Removing low frequency noise by denoising the DC
component

� The DC component can be reshaped as an image

Ñ
� Extract patches from this image yields additive Gaussian noise problem

with colored noise

� A change of basis brings us back to an additive white Gaussian noise Ñ
can be denoised with the HDMI method
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Results

Noisy with σ “ 50
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Results

Denoised with HDMI K “ 50, psnr = 36.47 dB
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Results

+ corrected DC component (HDMI K “ 30), psnr = 36.90 dB
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Results

Denoised with FFDNet, Zhang et al. 2018, psnr = 36.72dB
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Conclusion and future work

We explored model-based patch-based image denoising and we designed the
HDMI model that performs state-of-the-art results. This work open several
questions and future works:

� Statistical modeling versus deep learning?
Ñ Statistical modeling is not dead yet! Ñ complementary approaches

� Lower-bound for the denoising quality
Ñ change of paradigm: use the HDMI model in a global way.

� Some miss-classifications when the noise variance is high
Ñ use of robust estimators such as the geometric median.

� Extension to other image problem
Ñ missing pixels, inpainting, texture generation.
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Thank you for your attention!

Any question?

More information on the HDMI model and my new preprint:
houdard.wp.imt.fr
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Aggregation problem

Each pixel belongs in p patches:

In all the experiments here: uniform aggregation.

In the literature: there exist different aggregation methods
Ñ able to improve visual results but in many cases, the final pixel is still
obtained from a fixed number of realizations.



Other inverse problem : missing pixels

70% missing pixels

EM is well-adapted for missing data Ñ the model can be easily adapted for
missing pixel restoration



Other inverse problem : missing pixels

restored with HDMI

EM is well-adapted for missing data Ñ the model can be easily adapted for
missing pixel restoration



Regularizing effect of the dimension reduction



The HDMI algorithm

Input u noisy image, p patch size, K number of groups, tσ1, . . . , σmu list of
standard deviation.
Output û denoised image.
Extract ty1, . . . , ynu patches from u;
for σ “ σ1, . . . , σm do

Initialization few iteration of k-means.
dlÐ8.
while dl ą ε do

M-step update parameters and dimensions dk
E-step compute tik.
update the log-likelihood l and compute the relative error dl “ |l´ lex|{|l|.
lexÐ l.

end while
compute the BIC for the model associated with σ

end for
select the model with the better BIC.
compute denoised patches tx1, . . . , xnu with conditional expectation;
aggregate patches xi in order to recover the denoised image v.



Learning on a sub-sample of the patches

Figure: Effect of the subsampling on the computing time and the denoising
performance with HDMI. Left: PSNR versus sampling size. Right: Computation
time versus same sampling size. Dotted-lines: 20% subsampling.



Influence of the number of group K

Figure: Denoising results (PSNR) with regard to K (left) and choice of K with
BIC (right).



Selection of σ2 with BIC
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