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Digital photography: noise in images

Different I1SO settings with constant exposure — 25600 ISO




Digital photography: noise in images

Different I1SO settings with constant exposure — 200 ISO




Noise modeling and denoising problem

Noise modeling - the additive Gaussian white noise model

after variance stabilization ‘/TL = Uy —I— gz

A T

observed random underying clean additive Gaussian
variable pixel white noise N'(0, 0%
l Denoising problem
one realization v; find an estimate p
is obsel:ved al _ f(Uz) e .
."4

Need more realizations or prior information
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Patch-based image denoising

= Many denoising methods rely on the description of the image by patches:

NL-means Buades, Coll, Morel (2005),
BM3D Dabov, Foi, Katkovnik (2007),
PLE Yu, Sapiro, Mallat (2012),
NL-Bayes Lebrun, Buades, Morel (2012),
LDMM Shi, Osher, Zhu (2017),

and many others...

* ok ok ok %
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Patch-based image denoising

* Patch extraction operators

* Noise model on the image V = u + & N(0,0°%1,)
* Noise model on the patches P7V = qu -+ PlE N(O, P,‘,UQInPZ-T)
Y, = x; + N; N(0,02%1,2)

Hypothesis: the N; are i.i.d.
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Patch-based image denoising

The Bayesian paradigm

* We consider each clean patch z as a realization of a random vector X
with prior distribution Py .

— The Gaussian white noise model rewrites:

E-E-E

Y =X+ N ~N(0,0°I)

then Bayes' theorem vyields the posterior distribution:

Py x (y|lz)Px ()

6/48



Patch-based image denoising

TLMMSE

posterior distribution

TMAP TIMMSE

Denoising strategies

"z

E[X|Y = y] the minimum mean square error (MMSE) estimator

® 7 =Dy+ast Dand a minimize E[|DY + o — X |?] which is the
linear MMSE also called Wiener estimator

® 7 =arg ;Iég}gp(ﬂy) the maximum a posteriori (MAP)
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Outline

1. Gaussian priors for X: why are they widely used?

2. How to infer parameters in high dimension?

3. Presentation of the HDMI method.

4. Limitations of model-based patch-based approaches.
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1. Modeling the clean patches X
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Choice of the model

In the literature

® |ocal Gaussian models

* patch-based PCA Deledalle, Salmon, Dalalyan (2011),
* NL-bayes |ebrun, Buades, Morel (2012),

* L.

®m Gaussian mixture models

EPLL Zoran, Weiss (2011),
PLE Yu, Sapiro, Mallat (2012),
Single-frame Image Denoising Teodoro, Almeida, Figueiredo (2015).

* ot o %

Why Gaussian models are so widely used?
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Gaussian is convenient

m Gaussian model

If X ~N(u, X) then

TMMSE = TWiener = IMAP = i+ X( + o?1) " (y — p).

® Gaussian mixture model (GMM)

If X ~ ZkK=1 TN (pg, Xr) then

K
Bumse = O, P(Z = kY = y) [ + Sk(Sk + o) 7y — )] -

k=1
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What do Gaussian models encode?

The covariance matrix in Gaussian models and GMM encodes geometric
structures up to some contrast change:

S XS

Covariance matrix X.
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What do Gaussian models encode?

The covariance matrix in Gaussian models and GMM encodes geometric
structures up to some contrast change:

S
«—>

S XS

Covariance matrix X. Patches generated from N(m, X).
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What do Gaussian models encode?

A covariance matrix cannot encode multiple translated versions of a

structure:

A set of 10000 patches representing edges with random grey levels and
random translations.
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What do Gaussian models encode?

A covariance matrix cannot encode multiple translated versions of a
structure:

i
E 1N
el
i
dl
Ol [

Covariance matrix X. Patches generated from N(m, X).
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Restore with the right model

covariance matrix

clean patch noisy patch denoised

1k
o o
1k N

14/48



Conclusion

Modeling the patches with Gaussian models is a good idea:

® They are convenient for computing the estimates;

® They are able to encode the geometric structures of the patches.

Need of good parameters for the model!
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2. How to infer parameters in high
dimension?
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Parameters inference

Gaussian model case: X ~ N (ux, Xx)
observed data {y1,...,y.} sampled fromY = X + N ~ N (uy,Zy).
The maximization of the likelihood

n

Z(y — )" Sy Ny — py),

i=1

yields the Maximum Likelihood estimators (MLE)

DO =

L(y;0) =

~ 1 ¢ & 1 ¢ ~ ~
Ay ==Y ui Sy = — > (i — fiv)" (v — fiv)-
i i

Since Xy = Xx + o?l,, it yields

ﬁ,X:ﬁy, ZX:Eyfo'ZIp.
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How to group patches?

Need to group the patches representing the same structure together

® For instance with | - |2 — not robust for strong noise:

11 n =
165 — B2 > |67 — %2

® Gaussian Mixture Models naturally provide a (more robust) grouping!
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Parameters inference

Gaussian Mixture Model case: X ~ Y N (g, Xk)
This implies a GMM on the noisy patches Y ~ > m NV (g, Sk)

EM algorithm: maximize the conditional expectation of the complete
log-likelihood:

ik IOg kg (yza ek))

)

where t;, = E[Z = k|y;,0*] and 6* a given set of parameters.

||M:

m E-step estimation of ¢;; knowing the current parameters
® M-step compute maximum likelihood estimators (MLE) for parameters:

~ 1 ~ 1
e = %, Hi = ;kztikyia Sy = nsztik(iyi — ) (yi — o)™
K3 K3

n
with n, = Zz tik.
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Sketch of a denoising algorithm

With all these ingredients, we can design a denoising algorithm:

m Extract the patches from the image with P; operators
® |earn a GMM for the clean patches X from the observations of Y’
® Denoise each patch with the MMSE

® Aggregate all the denoised patches with the P operators
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The curse of dimensionality

Parameter estimation for Gaussian models or GMMs suffers from the curse

of dimensionality
&

The number of samples needed for the estimation of a parameter grows
exponentially with the dimension

21/48



The curse of dimensionality in patches space

We consider patches of size p = 10 x 10 — High dimension. % 5
s

— the estimation of sample covariance matrices is difficult: ill conditioned,
singular...
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The curse of dimensionality in patches space

We consider patches of size p = 10 x 10 — High dimension. % 5
s

— the estimation of sample covariance matrices is difficult: ill conditioned,
singular...

In the literature, this issue is generally worked around by
m the use of small patches (3 x 3 or 5 x 5)
® adding eI to singular covariance matrices

m fixing a lower dimension for covariance matrices

But, there is no reason to be afraid of this cursel
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The bless of dimensionality?

In high-dimensional spaces, it is easier to separate data:
Many patches represent structures that live locally in a low dimensional
space: using this latent lower dimension allows to group the patches in a

more robust way.

This “bless” is used in clustering algorithms designed for high-dimension
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The bless of dimensionality?

An illustration in the context of patches: _ .
: 1 gLl B B
| P PR : B i

an image made of vertical stripes of width >2 pixels with random grey levels.

1x3 patch

[T 1]

O
I EE 10

left edge right edge constant
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The bless of dimensionality?

An illustration in the context of patches:

i i
AT B

1

1.5

view 1 view 2

In the patch space, we cannot distinguish three classes
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The bless of dimensionality?

An illustration in the context of patches:

WL

-0.5
-0.5

1

15 15

view 1 of the first 3 pixels view 2 of the first 3 pixels
The algorithm is now able to separate these classes!
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3. High-Dimensional Mixture Models
for Image Denoising

-
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HDMI: presentation of the model

= model the clean patches X

+ Z latent random variable indicating group membership
+ X lives in a low-dimensional subspace which is specific to its latent group:
X721 ~ N (e, Up Ak UL)

where Uy is a p x dy orthogonal matrix and Ay = diag(\f,..., A% ) a
diagonal matrix of size d;. x dy.
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HDMI: induced model

® Induced model on the noisy patches YV
The model on X implies that Y follows a full rank GMM

K
p(y) = > kg (v ik T)
k=1

where U XU} has the specific structure:

a1 0
0 dy,
0 Qkd
0 (p—dk)
where ay; = )\;? + 0% and ay; > 0%, for j =1,...,dy.

27/48



Denoising with the HDMI model

The HDMI model being known, each patch is denoised with the MMSE

K
z; = E[X|Y = y;] = Z tinr(yi)
k=1
where t;; is the posterior probability for the patch y; to belong in the k-th
group and

ak170'2
ak1 0
Yr(yi) = pe + U UL (yi — ).
ard ,_02
0

28/48



Model inference

with an EM algorithm, the parameters are updated during the M-step :

» U is formed by the d, first eigenvectors of the sample covariance matrix

® Qy; is the j-th eigenvalue of the sample covariance matrix
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Model inference

with an EM algorithm, the parameters are updated during the M-step :

» U is formed by the d, first eigenvectors of the sample covariance matrix

® Qy; is the j-th eigenvalue of the sample covariance matrix

The hyper-parameters K and d,...,dx cannot be determined by
maximizing the log-likelihood since they control the model complexity.
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Model inference

We propose to set K at a given value and to choose the intrinsic dimensions
dk:

® using an heuristic that links dj, with the noise variance o2 when known;

® using a model selection tool in order to select the best variance o2 when
unknown.
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Estimation of intrinsic dimensions — known variance

With dj, begin fixed, the MLE for the noise variance in the kth group is

C’\k = Z ;-

] dp+1

When the noise variance o is known, this gives us the following heuristic:

Heuristic. Given a value of ¢2 and for k = 1, ..., K, we estimate the
dimension d; by

Z arj —o”

] d+1

d = argmind
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Estimation of intrinsic dimensions — convergence

By re-evaluating the dimensions, we change the model at each M-step!

Question: is the convergence ensured?
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Estimation of intrinsic dimensions — convergence

By re-evaluating the dimensions, we change the model at each M-step!

Question: is the convergence ensured?

dimensions
N
o

groups

the dimensions stabilize — there exists an iteration where the algorithm

becomes a classic EM.
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Estimation of intrinsic dimensions — unknown variance

Each value of ¢ yields a different model, we propose to select the one with
the better BIC (Bayesian Information Criterion)

M),

BIC(M) = £(6)

where £(M) is the complexity of the model.

Why BIC is well-adapted for the selection of o7
m If o is too small, the likelihood is good but the complexity explodes;
m if o is too high, the complexity is low but the likelihood is bad.
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Estimation of intrinsic dimensions — unknown variance

Akl 0

0 Qld

Ay

(p—dy)

Why BIC is well-adapted for the selection of o7

m If o is too small, the likelihood is good but the complexity explodes;
m if o is too high, the complexity is low but the likelihood is bad.
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Summary: the HDMI algorithm

We presented the HDMI model for image denoising:

® which models the full process of the generation of the noisy patches;
m 3 fully statistical modeling without the usual “denoising cuisine”;
B can be used in a “blind” way thanks to BIC selection;

B attains state-of-the-art performances!
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Numerical Experiments

Clean image
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Numerical Experiments
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Numerical Experiments

Den0|sed Wlth BM3D, Foi et al. 2007, psnr = 27 17dB
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Numerical Experiments

Den0|sed W|th FFDNet, Zhang et al. 2018, psnr = 27.58dB

%" 4
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Numerical Experiments

Denoised with HDMI K = 50, psnr = 27.28dB

W

35/48



Numerical Experiments — zooms

Clean image
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Numerical Experiments — zooms

Noisy image o = 50
e :
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Numerical Experiments — zooms

Denoised with BM3D, Foi et al. 2007, psnr = 27.17dB
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Numerical Experiments — zooms

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.58dB
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Numerical Experiments — zooms

Denoised with HDMI K = 50, psnr = 27.28dB
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Numerical Experiments

Clean image
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments

Denoised with HDMI K = 50, psnr = 7.5dB

¥ Sl
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Numerical Experiments — zooms

Clean image
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Numerical Experiments — zooms

38/48



Numerical Experiments — zooms

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB

-
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Numerical Experiments — zooms

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB
-
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Numerical Experiments — zooms

Denoised with HDMI K = 50, psnr = 27.05dB
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4. Limitations of denoising in the
patch-space
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The lower bound for patch-based image denoising

proposed a lower bound for
patch-based image denoising.

In this context, denoting my the number of patches in the k-th group and
N the total number of patches, the bound for HDMI is

E [||U — aHDMIHQ] >

el —
Nk:1 p+o
0'2 K
C——>» m
N(p+02) 1§1 *
o2
= C——— independent of N.
p+o

even if the number of samples increases by stretching the image size to
infinity, the noise variance cannot be reduced more than a factor p.
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The lower bound for patch-based image denoising

HDMI (patches 3 x 10) - PSNR = 30.12

EHR FFE A EL EIEIE Y ENEE] PR ST
I . O 0O R S AT
EEm IR El NI I EEE ] YN e

L2 grouping (patches 3 x 10) - PSNR = 25.03

EER EEEE O EIT IR Y RN PR R
ORGSR | A A ) SRR R R B TR A T P PR
FIE R R BT EIEED IR DN R T
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The lower bound for patch-based image denoising

] ai
I T LA 0
i

- PSNR = 30 84
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The low frequency noise

Denoised with HDMI K = 50, psnr = 36.47 dB




Removing low frequency noise by denoising the DC
component

® Define the centered observed random variable Y;* = Y; — 571-1,,, where

SR

Jj=1

'~<|
ﬁ\»—‘

is the DC component of the patch.
® The noise model can then be divided into the two following problems
Y, =X, + N,cR, (1)

Y = X¢ + Nf € RP. )
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Removing low frequency noise by denoising the DC
component

® The DC component can be reshaped as an image

—>

m Extract patches from this image yields additive Gaussian noise problem
with colored noise

m A change of basis brings us back to an additive white Gaussian noise —
can be denoised with the HDMI method
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Results

Denoised with HDMI K = 50, psnr = 36.47 dB




Results

+ corrected DC component (HDMI K = 30), psnr = 36.90 dB




Results

Denoised with FFDNet, Zhang et al. 2018, psnr = 36.72dB




Conclusion and future work

We explored model-based patch-based image denoising and we designed the
HDMI model that performs state-of-the-art results. This work open several
questions and future works:

m Statistical modeling versus deep learning?
— Statistical modeling is not dead yet! — complementary approaches

® |Lower-bound for the denoising quality
— change of paradigm: use the HDMI model in a global way.

® Some miss-classifications when the noise variance is high
— use of robust estimators such as the geometric median.

m Extension to other image problem
— missing pixels, inpainting, texture generation.
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Thank you for your attention!

Any question?

More information on the HDMI model and my new preprint:
houdard.wp.imt.fr
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https://houdard.wp.imt.fr/

Aggregation problem

Each pixel belongs in p patches:

In all the experiments here: uniform aggregation.

In the literature: there exist different aggregation methods
— able to improve visual results but in many cases, the final pixel is still
obtained from a fixed number of realizations.



Other inverse problem : missing pixels

EM is well-adapted for missing data — the model can be easily adapted for
missing pixel restoration



Other inverse problem : missing pixels

restord with HDMI

EM is well-adapted for missing data — the model can be easily adapted for
missing pixel restoration



Regularizing effect of the dimension reduction




The HDMI algorithm

Input u noisy image, p patch size, K number of groups, {o1,...,0m} list of
standard deviation.
Output % denoised image.

Extract {y1,...,yn} patches from u;

for c =01,...,0m do
Initialization few iteration of k-means.
dl « oo.

while dl > ¢ do
M-step update parameters and dimensions dj,
E-step compute ;.
update the log-likelihood I and compute the relative error di = |l — lex|/|l].

lex <« 1.
end while
compute the BIC for the model associated with o
end for
select the model with the better BIC.
compute denoised patches {z1,...,z,} with conditional expectation;

aggregate patches x; in order to recover the denoised image v.



Learning on a sub-sample of the patches

P m——

600

100

05 04 03 06 07 08 09
Sample ratio

Figure: Effect of the subsampling on the computing time and the denoising
performance with HDMI. Left: PSNR versus sampling size. Right: Computation
time versus same sampling size. Dotted-lines: 20% subsampling.



Influence of the number of group K
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Figure: Denoising results (PSNR) with regard to K (left) and choice of K with
BIC (right).



Selection of o2 with BIC

BIC
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