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Image restoration : solving an inverse problem

� Image restoration problem :
find the clean image u from the observed degraded image v s.t.

v = Φu+ ε,

with Φ degradation operator and ε additive noise.

� Gaussian white noise case :
Here we deal with the simpler problem Φ = I and ε ∼ N (0, σ2I)
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Patch-based image denoising

� most of the denoising methods rely on the description of the image by
patches (NL-means, NL-Bayes, S-PLE, LDMM, PLE, BM3D, DA3D)

« Les patchs sont aux images ce que les phonèmes sont à la chaîne parlée. »
Pattern Theory, Desolneux & Mumford
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Patch-based image denoising
the statistical framework

� We consider each clean patch xi as a realization of a random vector Xi

with some prior distribution PX

� the Gaussian white noise model for patches yields

with Ni ∼ N (0, Ip).

� Hypothesis : Ni and Xi are independent and the Ni’s are i.i.d.

� so we can write the posterior distribution with Bayes’ theorem

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
.
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Patch-based image denoising
denoising strategies

Denoising strategies

� x̂ = E[X|Y = y] the minimum mean square error (MMSE) estimator

� x̂ = Dy + α s.t. D and α minimize E[‖DY + α−X‖2] which is the
linear MMSE also called Wiener estimator

� x̂ = arg maxx∈Rp p(x|y) the maximum a posteriori (MAP)
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Patch-based image denoising
choice and inference of the model

In the literature

� local Gaussian models [NL-bayes]

� Gaussian mixture models (GMM) [PLE, S-PLE, EPLL]

Advantages of Gaussian models and GMM

� able to encode information of the patches

� make computation of estimators easy
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Patch-based image denoising
Gaussian and GMM models

The covariance matrix in Gaussian models and GMM is able to encode
geometric structure in patches :

Left : Covariance matrix Σ. Right : patches generated from the Gaussian
model N (0,Σ).
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Restore with the right model

covariance matrix clean patch noisy patch denoised
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Patch-based image denoising
summary of the framework
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The curse of dimensionality

Parameters estimation for Gaussian models or GMMs suffers from the curse
of dimensionality

This term curse was first used by R. Bellman in the introduction of his book
“Dynamic programming” in 1957 :

All [problems due to high dimension] may be subsumed under the heading
“the curse of dimensionality”. Since this is a curse, [...], there is no need to
feel discouraged about the possibility of obtaining significant results despite
it.

10 / 29



The curse of dimensionality
High-dimensional spaces are empty

In high-dimensional space no one can hear you scream !
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The curse of dimensionality
High-dimensional spaces are empty

Neighborhoods are no more local !

Data are isolated
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The curse of dimensionality
In patches space

We consider patches of size p = 10× 10 → High dimension.

→ the estimation of sample covariance matrices is difficult : ill conditioned,
singular...

In the literature, this issue is worked around by
� the use of small patches in NL-Bayes (3× 3 or 5× 5)
� a model of mixture with fixed lower dimensions covariances in S-PLE

We propose a fully statistical model, that estimates a lower dimension for
each group.
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Reminder : Noise model and notations
We denote
� {y1, . . . , yn} ∈ Rp the (observed) noisy patches of the image ;
� {x1, . . . , xn} ∈ Rp the corresponding (unobserved) clean patches.

We suppose they are realizations of random variables Y and X that follow
the classical degradation model :

= +

We design for X the High-Dimensional Mixture Model for Image Denoising
(HDMI)
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The HDMI model

� Model on the actual patches X. Let Z be the latent random variable
indicating the group from which the patch X has been generated. We
assume that X lives in a low-dimensional subspace which is specific to its
latent group :

X|Z=k = UkT + µk,

where Uk is a p× dk orthonormal transformation matrix and T ∈ Rdk
such that

T | Z = k ∼ N (0,Λk),

with Λk = diag(λk1 , . . ., λ
k
dk

).
� Model on the noisy patches. This implies that Y follow

p(y) =

K∑
k=1

πkg (y;µk,Σk)

where πk is the mixture proportion for the kth component and
Σk = UkΛkU

T
k + σ2Ip.
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The HDMI model

The projection of the covariance matrix ∆k = QkΣkQ
t
k has the specific

structure :

∆k =



ak1 0
. . .

0 akd

0

0
σ2 0

. . .
0 σ2



 dk

 (p− dk)

where akj = λkj + σ2 and akj > σ2, for j = 1, . . . , dk.
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The HDMI model

Y
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X
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Z

µk, dk

ak1, ..., akdk

Qk

π σ2

Figure – Graphical representation of the HDMI model.
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Denoising with the HDMI model

The HDMI model being known, each patch is denoised with the MMSE
estimator

x̂i = E[X|Y = yi],

which can be computed as follow :

Proposition.

E[X|Y = yi] =

K∑
k=1

ψk(yi)tik,

with tik the posterior probability for the patch yi to belong in the kth
group and

ψk(yi) = µk + Uk


ak1−σ2

ak1
0

. . .

0
akdk

−σ2

akdk

UTk (yi − µk),
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Model inference

EM algorithm : maximize w.r.t. θ the conditional expectation of the
complete log-likelihood :

Ψ(θ, θ∗)
def
=

K∑
k=1

n∑
i=1

tik log (πkg (yi; θk)) ,

where tik = E [z = k|yi, θ∗] and θ∗ a given set of parameters.

� E-step estimation of tik knowing the current parameters
� M-step compute maximum likelihood estimators (MLE) for parameters :

π̂k =
nk
n
, µ̂k =

1

nk

∑
i

tikyi, Ŝk =
1

nk

∑
i

tik(yi − µk)(yi − µk)T ,

with nk =
∑
i tik. Then Q̂k is formed by the dk first eigenvectors of Ŝk

and âkj is the jth eigenvalue of Ŝk.
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Model inference
The hyper-parameters

The hyper-parameters K and d1, . . . , dK cannot be determined by
maximizing the log-likelihood since they control the model complexity.

We propose to set K at a given value (in the experiments we use K = 40
and K = 90) and to choose the intrinsic dimensions dk :

� using an heuristic that links dk with the noise variance σ when known ;

� using a model selection tool in order to select the best σ when unknown.
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Estimation of intrinsic dimensions
when σ is known

With dk begin fixed, the MLE for the noise variance in the kth group is

σ̂2
|k =

1

p− dk

p∑
j=dk+1

âkj .

When the noise variance σ is known, this gives us the following heuristic :

Heuristic. Given a value of σ2 and for k = 1, ...,K, we estimate the
dimension dk by

d̂k = argmind

∣∣∣∣∣∣ 1

p− d

p∑
j=d+1

âkj − σ2

∣∣∣∣∣∣ .
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Estimation of intrinsic dimensions
when σ is unknown

Each value of σ yields a different model, we propose to select the one with
the better BIC (Bayesian Information Criterion)

BIC(M) = `(θ̂)− ξ(M)

2
log(n),

where ξ(M) is the complexity of the model.

why BIC is well-adapted for the selection of σ ?

� if σ is too small, the likelihood is good but the complexity explodes ;
� if σ is too high, the complexity is low but the likelihood is bad.
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Experiment : selection of σ with BIC

22 / 29



Numerical experiments
Visualization of the intrinsic dimensions

We display for each pixel the dimension of the most probable group of the
patch around it.

clean noisy clustering dimensions map
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Regularizing effect of the dimension reduction
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Numerical Experiments

Clean image
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Numerical Experiments

Noisy image σ = 50
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Numerical Experiments

Denoised with BM3D, Foi et al. 2007, psnr = 27.17dB
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Numerical Experiments

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.58dB
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Numerical Experiments

Denoised with HDMIsup K = 90, psnr = 27.28dB
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Numerical Experiments

Clean image
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Numerical Experiments

Noisy image σ = 50
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Numerical Experiments

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB
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Numerical Experiments

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB
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Numerical Experiments

Denoised with HDMIsup K = 90, psnr = 27.05dB
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Numerical Experiments

PSNR HDMI vs FFDNet
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Numerical Experiments

Best of both worlds, psnr = 27.86dB
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Other inverse problem : missing pixels

70% missing pixels

EM is well-adapted for missing data → the model can be easily adapted for
missing pixel restoration
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Other inverse problem : missing pixels

restored with HDMI

EM is well-adapted for missing data → the model can be easily adapted for
missing pixel restoration
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Conclusion and further work
High dimensional mixtures models for patches
� can model the full process of the generation of the noisy patches ;
� for denoising : can be used unsupervised (σ unknown) and reach

state-of-the-art performances ;
� not restricted to denoising : interpolation, inpainting, image synthesis ;
� complementary to DL approaches : yield simple image models, easy to

interpret ;

Some issues and further work
� high computation time → learn the model on a subsample of the patches
� in the case of high σ some miss-classification can yield artifacts →

explore other initialization ?
� low-frequency noise in flat areas → explore aggregation methods

(weighted, EPLL) ?

Preprint available at : up5.fr/HDMI
or

houdard.wp.imt.fr/hdmi/
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Thank you for your attention !

Any question ?

Preprint available at : up5.fr/HDMI
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