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Image restoration : solving an inverse problem

= |Image restoration problem :
find the clean image u from the observed degraded image v s.t.

v =®u+e,

with ® degradation operator and ¢ additive noise.

m Gaussian white noise case :
Here we deal with the simpler problem ® = I and ¢ ~ N(0,0°1)




Patch-based image denoising

® most of the denoising methods rely on the description of the image by
patches (NL-means, NL-Bayes, S-PLE, LDMM, PLE, BM3D, DA3D)

« Les patchs sont aux images ce que les phonémes sont a la chaine parlée. »
Pattern Theory, Desolneux & Mumford
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Patch-based image denoising

the statistical framework

®m We consider each clean patch z; as a realization of a random vector X;
with some prior distribution Px

m the Gaussian white noise model for patches yields

E-F8
Y, Xi N;

with Ni ~ N(O,Ip)
® Hypothesis : N; and X; are independent and the N;'s are i.i.d.

B so we can write the posterior distribution with Bayes' theorem

Py x (y|z) Px ()
Py (y)

Pxy(zly) =
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Patch-based image denoising

denoising strategies

po:sterior distribution
L]

ITMAP  TMMSE

Denoising strategies

m 7 = E[X]Y = y] the minimum mean square error (MMSE) estimator

® 7= Dy+ast. D and a minimize E[||[DY + o — X||?] which is the
linear MMSE also called Wiener estimator

B 7 = argmax;cre p(x|y) the maximum a posteriori (MAP)
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Patch-based image denoising

choice and inference of the model

In the literature

® local Gaussian models [NL-bayes]

® Gaussian mixture models (GMM) [PLE, S-PLE, EPLL]

Advantages of Gaussian models and GMM

B able to encode information of the patches

® make computation of estimators easy




Patch-based image denoising
Gaussian and GMM models

The covariance matrix in Gaussian models and GMM is able to encode
geometric structure in patches :

Left : Covariance matrix 3. Right : patches generated from the Gaussian
model N(0, ).
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Patch-based image denoising
Gaussian and GMM models

The covariance matrix in Gaussian models and GMM is able to encode
geometric structure in patches :

Left : Covariance matrix 3. Right : patches generated from the Gaussian
model N(0, ).



Restore with the right model

covariance matrix clean patch noisy patch denoised
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Patch-based image denoising

summary of the framework

Denoising with patch-based Gaussian priors

grouping modeling denoising
using ategies:

Gaussian model for
each group -
q
inference Rencised
patches space " patches

£(30) =~ log (6(u130))

0= (1,5} or {mx,m, Sk}

patch extraction aggregation

output: clean image




The curse of dimensionality

Parameters estimation for Gaussian models or GMMs suffers from the curse

of dimensionality
&

This term curse was first used by R. Bellman in the introduction of his book
“Dynamic programming” in 1957 :

All [problems due to high dimension] may be subsumed under the heading
“the curse of dimensionality”. Since this is a curse, [...], there is no need to
feel discouraged about the possibility of obtaining significant results despite
it.




The curse of dimensionality

High-dimensional spaces are empty

IN GPACE NO ONE CANHEAR Y0U SCREAM

In high-dimensional space no one can hear you scream!
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The curse of dimensionality

High-dimensional spaces are empty

IN GPACE NO ONE CAN HEAR Y0U 5CREAM

‘Neighborhoods are no more local ! ‘

‘ Data are isolated ‘
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The curse of dimensionality

In patches space

We consider patches of size p = 10 x 10 — High dimension. % 5
S

— the estimation of sample covariance matrices is difficult : ill conditioned,
singular...




The curse of dimensionality

In patches space

We consider patches of size p = 10 x 10 — High dimension. % 5
S

— the estimation of sample covariance matrices is difficult : ill conditioned,
singular...

In the literature, this issue is worked around by
® the use of small patches in NL-Bayes (3 x 3 or 5 x 5)

® a model of mixture with fixed lower dimensions covariances in S-PLE

We propose a fully statistical model, that estimates a lower dimension for
each group.




Reminder : Noise model and notations

We denote
® {y1,...,yn} € RP the (observed) noisy patches of the image;
® {x1,...,2,} € RP the corresponding (unobserved) clean patches.

We suppose they are realizations of random variables Y and X that follow
the classical degradation model :

E-E-E

Y =X+ N ~N(0,0%T)




Reminder : Noise model and notations

We denote
® {y1,...,yn} € RP the (observed) noisy patches of the image;
® {x1,...,2,} € RP the corresponding (unobserved) clean patches.

We suppose they are realizations of random variables Y and X that follow
the classical degradation model :

We design for X the High-Dimensional Mixture Model for Image Denoising
(HDMI)
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-
The HDMI model

® Model on the actual patches X. Let Z be the latent random variable
indicating the group from which the patch X has been generated. We
assume that X lives in a low-dimensional subspace which is specific to its
latent group :

Xz=k = UpT + g,
where Uy, is a p x dj, orthonormal transformation matrix and 7' € R%
such that
T|Z=k~N(0,Ag),

with Ay = diag(\¥, .. ., )\’;k).

® Model on the noisy patches. This implies that Y follow

K

PW) =D kg (v ik S)
k=1

where 7y is the mixture proportion for the kth component and
Y = U/cAkUg + 0'211,.
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The HDMI model

The projection of the covariance matrix Ay, = QX Q% has the specific

structure :
ar1 0
0 dy,
0 Akd
Ay =
o? 0
0 - (p — d)

0 o2

where ai; = /\;? + 02 and ag; > 02, for j=1,...,dy.
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The HDMI model

Akly -5 Qkdy,

M, dk_

(.

J

Figure — Graphical representation of the HDMI model.
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Denoising with the HDMI model

The HDMI model being known, each patch is denoised with the MMSE

estimator
7; = BIX|Y =y,

which can be computed as follow :

Proposition.

X|Y—yz Zwk yz zkv

with ;. the posterior probability for the patch y; to belong in the kth

group and
akl—o'Z 0
Akl
Ui (yi) = pe + U U (i — ),
Akd, —o?
0 Qkdy,
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Model inference

EM algorithm : maximize w.r.t. 6 the conditional expectation of the
complete log-likelihood :

K n
W(0,0%) €SS tixlog (mrg (i3 61))

k=11i=1

where t;;, = F [z = k|y;, 0*] and 6* a given set of parameters.

m E-step estimation of ¢;; knowing the current parameters
® M-step compute maximum likelihood estimators (MLE) for parameters

1 ~
== = — tikyi, Sk = t
Tk n, 125 e ; ikYi k= Z zk

,uk) 5

with ng = >, tip. Then @k is formed by the dk first eigenvectors of §k
and ay; is the jth eigenvalue of 5.
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B
Model inference

The hyper-parameters

The hyper-parameters K and dy, ..., dx cannot be determined by
maximizing the log-likelihood since they control the model complexity.

We propose to set K at a given value (in the experiments we use K = 40
and K = 90) and to choose the intrinsic dimensions dj, :

B using an heuristic that links dj, with the noise variance o when known ;

B using a model selection tool in order to select the best o when unknown.




Estimation of intrinsic dimensions

when o is known

With dj, begin fixed, the MLE for the noise variance in the kth group is

Z Q-

J di+1

Ulk =

When the noise variance o is known, this gives us the following heuristic :

Heuristic. Given a value of 62 and for k = 1, ..., K, we estimate the
dimension dj, by

_— 1
d _ . ~ L 2 .
| = argming . g ap; — 0




B
Estimation of intrinsic dimensions

when o is unknown

Each value of ¢ yields a different model, we propose to select the one with
the better BIC (Bayesian Information Criterion)

§M)

BIC(M) = £(0) — 5

log(n),

where £(M) is the complexity of the model.

why BIC is well-adapted for the selection of o7

m if o is too small, the likelihood is good but the complexity explodes ;
m if o is too high, the complexity is low but the likelihood is bad.
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Estimation of intrinsic dimensions

when o is unknown

[¢75) 0

0 QAkd

Ay =

(p —dy)

why BIC is well-adapted for the selection of o7

m if o is too small, the likelihood is good but the complexity explodes ;

B if o is too high, the complexity is low but the likelihood is bad.
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Experiment : selection of o with BIC
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Numerical experiments

Visualization of the intrinsic dimensions

We display for each pixel the dimension of the most probable group of the
patch around it.

clustering

s}

dimensions map




Regularizing effect of the dimension reduction




Numerical Experiments
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Numerical Experiments

Denoised with BM3D, Foi et al. 2007, psnr = 27.17dB
S o ‘ rao

I R




Numerical Experiments

Denonsed with FFDNet Zhang et al. 2018, psnr = 27. 58dB
N N _ ) 7




Numerical Experiments

lsup K =90, psnr = 27.28dB




Numerical Experiments

Clean image
.




Numerical Experiments




Numerical Experiments

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB




Numerical Experiments

Deoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB




Numerical Experiments

Denoised with HDMI,,,,, K = 90, psnr = 27.05dB
g |




Numerical Experiments




Numerical Experiments

Best of both worlds, psnr = 27.86dB

sk




Other inverse problem : missing pixels

70% missing pixels

ERR £ bt i R e

EM is well-adapted for missing data — the model can be easily adapted for
missing pixel restoration
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Other inverse problem : missing pixels

restored with HDMI
Sk :

EM is well-adapted for missing data — the model can be easily adapted for
missing pixel restoration
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Conclusion and further work

High dimensional mixtures models for patches

® can model the full process of the generation of the noisy patches;

m for denoising : can be used unsupervised (o unknown) and reach
state-of-the-art performances;

B not restricted to denoising : interpolation, inpainting, image synthesis;

® complementary to DL approaches : yield simple image models, easy to
interpret ;

Some issues and further work

® high computation time — learn the model on a subsample of the patches

B in the case of high o some miss-classification can yield artifacts —
explore other initialization ?

m |ow-frequency noise in flat areas — explore aggregation methods
(weighted, EPLL)?

Preprint available at : up5.fr/HDMI
or
houdard.wp.imt.fr/hdmi/
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Thank you for your attention |

Any question ?

Preprint available at : up5.fr/HDMI
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